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The subject of this paper is the energy transfer phenomenon in a rigid 
and opaque body that exchanges energy, with the environment, 
by convection and by diffuse thermal radiation. The considered 
phenomenon is described by a partial differential equation, subjected to 
(nonlinear) boundary conditions. It is presented with a minimum 
principle, suitable for a large class of energy transfer problems. Some 
particular cases are simulated. 0 1992 Academic PWSS, Inc. 

INTRODUCTION 

The majority of the works whose main subject is the 
energy transfer phenomenon in rigid bodies is concerned 
with linear descriptions. In other words, the phenomena are 
usually represented by a linear mathematical problem. 

However, in general, the reality is not linear and, in many 
situations, cannot be approximated by linear descriptions. 
One of these situations occurs, for instance, when a body is 
at very high temperature and, consequently, the heat loss by 
thermal radiation is not negligible. 

The main subject of this work is the coupled conduction/ 
convection/radiation heat transfer phenomenon in a rigid 
and opaque body with internal heat supply. 

The main objective is to present a reliable way for 
simulating such nonlinear problems using finite elements. In 
other words, it will be presented with a minimum principle 
suitable for a large class of nonlinear energy transfer 
problems. 

This minimum principle will be represented by a con- 
tinuous, convex, and coercive functional whose existence 
provides an useful way for numerical simulations and 
assures the solution’s existence and uniqueness. 

The use of the minimum principle in the simulation of 
nonlinear energy transfer phenomena will be illustrated in 
this work by a typical example in which the conduction/ 
convection/radiation heat transfer phenomenon in a cylin- 
drical body is simulated using finite elements. 

THE STEADY-STATE HEAT 
TRANSFER PHENOMENON 

Let us consider a continuous body 23 represented by the 
bounded open set 52 with regular boundary ZQ. When this 
body is assumed rigid and opaque the energy transfer 
mechanism inside 1;2 is the conduction heat transfer. The 
steady-state conduction heat transfer phenomenon is 
governed by the equation [ 1 ] 

-Divq+q”‘=O in Q (1) 

in which q”’ represents the internal heat supply, per unit 
time and unit volume, and q is given by (Fourier Law) 

q= -KGrad T. (2) 

The fields q, T, and K represent, respectively, the conduc- 
tion heat flux (per unit time and unit area), the absolute 
temperature, and the thermal conductivity. The tensor field 
K is positive-definite and, in this paper, may depend only on 
the position X. 

The above equation (energy balance) must be subjected 
to boundary conditions. These boundary conditions arise 
naturally when it is imposed continuity in the normal heat 
flux across 852. Continuity holds if the normal conduction 
heat flux is equal to the sum of radiant and convective heat 
fluxes on 82. This condition may be represented as follows 

q o ” = qconv + qrad on a52 (3) 

in which n is the unit outward normal (defined for all 
x E dQ)Y 4cow is the heat (per unit time and unit area) lost 
by convection, and qrad is the heat (per unit time and unit 
area) lost by thermal radiation. 

Usually the convective heat loss is given by [2] 

4 Con” =h(T- T,) on aa (4) 
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in which T, is a temperature of reference (T, = T,(X) 2 0, (4”’ = $“( T, X), X E Q) may depend on the unknown T, 
X E aQ) and h is the convection heat transfer coefficient field provided 
(h > 0). 

The radiative heat loss is given by [3] q”‘(T,, X)aq”‘(T,, X) if T, < T2 for all X E Sz 

(10) 
qrad = EOT~ - c on a52 (5) 

f(T,, WdL W if T, < T, for all X E &2 

in which cr is the Stefan-Boltzmann constant, E is the (11) 

emittance field (0 < E d 1) and c (c z 0) is a given field that 
represents the thermal radiant energy coming from the hold and provided there exists an open nonempty subset 

environment. aS2 + (aa + G aa) such that 

Combining (1) (2) (3) (4) and (5) we have the mathe- 
matical problem f(T,, Xhf(L X) if T, < Tz 

for all X E aa + (12) 
Div(K Grad T) + q”’ = 0 in Q 

lim f(T,X)= +cc for all X E ac2 + (13) 
-KGrad Ton=eaT4-c+h(T-T,) (6) 

T-m 

on ac2 lim f(T, X)= --co forall xEasz+. (14) T-r --co 

in which the unknown is the absolute temperature T. PROPOSITION. 
Since T represents an absolute temperature we shall 

The solution of problem (9) exists, is 

employ, instead of Eq. (5), the equation 
unique, and is the field which minimizes the functional 

qrad=Eg 1Tl3 T-c on ai (7) Z[u] = 4 j {Grad UOK Grad u} dV 
R 

which is thermodynamically equivalent (because T > 0) and 
mathematically more convenient. 

-JbQdV+jJQf'dS (15) 

The employment of Eq. (7) is fundamental for the 
existence of a minimum principle. in which 

Combining (l), (2) (3) (4) and (7) we have the mathe- 
matical problem Q = &, Xl = j; G”‘(Y, X) dy (16) 

Div(K Grad T) + q”’ = 0 in Q 

-KGradTon=aaIT13T-c+h(T-T,) (8) 
F= F(u, X) = j;f(y, X) dy. (17) 

on aQ 
Proof The proof will be divided into three parts: 

in which the unknown is the absolute temperature T. (1) System (9) represents the Euler-Lagrange equation 
In order to enlarge the class of phenomena to be studied and the natural boundary conditions associated to Z[u]. Let 

we shall discuss, in the next section, a generalization of us consider the following admissible fields 
problem (8) and its variational formulation. 

u= T+ccn, UEH1(!2), (18) 

A GENERALIZED HEAT TRANSFER PROBLEM 
AND ITS MINIMUM PRINCIPLE 

in which T is a solution of (9), u is a real-valued parameter 
and v is an admissible variation. 

Let us consider the problem (that may be regarded as a Hence, the first variation of functional Z[u], defined in 

generalization of Eq. (8)) ( 15), is given as 

Div( K Grad T) + q”’ = 0 in Q 
(9) 

SZ=j {GradqoKGradT-i”‘(T,X)n}dV 
-KGrad Ton=f on asz 

R 

in which the fields f (f = f( T, X), X E &2) and q”’ 
+ f(T,X)ndS. s JR 

(19) 
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Employing Green’s Identity and imposing 6Z= 0 we 
obtain (since q is arbitrary) 

Since (lo), (11 ), and (12) hold we have 

eP(TT,,X)+(1-e)P(T,,X)-~((8T,+(1-0)T,,X)30, 

s { -Div(K Grad T) - q”‘} q dV= 0 (20) T, $ T, on a.@ 
R 

eF(T,,X)+(l-e)F(T,,X)-F(eT,+(l-Q)T,,X)>O, 

s {K Grad Ton+f} q dS=O (21) n T,$T, ondQ+,8E(O, 1) (25) 

which represents (9), in a weak sense. It is to be noticed that -e&(T,,X)-(l-e)&(T,,X) 
(assuming that q”’ belongs to L’(Q) and that K belongs to 
C”,‘(a)), T belongs to H*(Q) and, hence, since Q c R3 and 

+&T,+(l-@T,,X)>O, 

Q is sufficiently regular, T is continuous in Q 141. T,$T, inQ,eE(O, 1). (26) 

(2) 6Z= 0 corresponds to a minimum, which is unique. Hence the left side of inequality (24) is always nonnegative. 
This assertion holds if Z is a strictly convex functional; that Let us suppose that the left side of (24) becomes zero. In 
means 

Z[8T, + (1 - 0) T,] < eZ[T,] + (1 - 0) Z[ T2], 

T,$T2 infi,eE(O, 1). 

The above inequality is equivalent to 

5 
s 

{GradCoT, + (1 - 0) T2] R 

oKGrad[8T,+(1 -0) T,]) dV 

- &(BT,+(14)T,,X)dV 
I R 

+{ P(eT,+(l-8)T,,X)dS 
JR 

<$ 
I 

(0Grad T,oKGrad T, 
R 

+(l-e)GradT,oKGradT,}dV 

or 

- (e~(T,,X)+(l-e)$(T,,X)}dV s R 

+I {e~(TT,,X)+(1-B)~(T2,X)}dS, 
JR 

this case, once that K is a positive-definite tensorial field and 
&Q+ is nonempty, we must have 

(22) 

T, = T, + const in Q 

T, = T, on asz. 

In order to satisfy (27) and (28) we must have 

(27) 

(28) 

T, = T2 in a. (29) 

Hence the left side of (24) never becomes zero for T, f T2 
in B and, therefore, Z is a strictly convex functional. 

With these results we conclude that 6Z= 0 corresponds to 
a minimum, which is unique. 

(3) The field T, which minimizes Z, exists (solution’s 
existence). Now, in order to assure the solution’s existence 
it is sufficient to show that Z is a coercive functional [S]. 
A sufficient condition for coerciveness is 

lim zCyu’ = +a, 
( > 

UEH’(Q), u$O. (30) 
7-00 Y 

Aiming to demonstrate that (30) holds, we begin taking 
into account (10) and (11). Since q”’ and f satisfy (10) and 
(11) we conclude that 

(23) -&(u, X)2oi(X)u; a = i(X) = -@“‘(O, X), XEC2 

(31) 

fl(u, X) > B(X)% B = B(X) =fco, Xl, xEaQ. 
(32) 

1 0(1-e)Grad(T,-T,)oKGrad(T,--T,)dV s a Hence, we may write 

-F(eT1+(i-e)T2,X))dS 

- n{8&(TI,X)f(l-e)~(T,,X) I 

-&(8T,+(l-8)T,,X)}dV>O. (24) 

Z[yu] > $5, (Grad yuo K Grad yu> dV 

+ s 
&u, X) dS 

da+ 

+.I 
Pyu dS + jQ ayu dV (33) 

an-aR+ 
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and, consequently, 

+S;msn+puds+!“D~udV. (34) 

Sincefsatisfies (!2), (13) and (14) we have that ~((Yu, X) 
has, for any X E aQ +, a lower bound. In other words, 

I F(yu, X) dS > const. (35) 
iin+ 

Hence, if u is not constant in a, we conclude that 

iZ[yuJ>ij {GraduoKGradu}dV+const. (36) 
D 

and, therefore, 

,‘\m (y)>;limrjO (GraduoKGradu}dV 

+ const = +co. (37) 

On the other hand, if u = const in Q, we have that 

ydS+const (38) 

and, therefore, 

lim 1 Z[yu] >, lim J b4 X) ___ dS + const. (39) 
7-x y >‘* 00 ?Q+ Y 

Since (13) and (14) hold, we have that 

= +a, u E const. (40) 

and, consequently, from (39), 

for u = const in a. (41) 

Thus, we have proven that (30) holds. This result, 
associated to the functional’s continuity and convexity, 
assures the existence of a solution that, as we have 
demonstrated, is unique. 

THE MINIMUM PRINCIPLE FOR AN 
IMPORTANT PARTICULAR CASE 

Let us assume that (in problem (8)) E, h, T,, c, and q”’ 
depend only on the position X (E =E^(X), h = A(X), 
T, = fm(X), c = C(X), and q”’ = i”‘(X)). In such a situation 
the functional Z[u] is given as 

Z[u] = 4 5 {Grad uoK Grad U} dV 
52 

- j 
R 

q”‘udV+jaQ {$ (u15 

++h(u- T,)2-ccu} dS. (42) 

Here the field q”’ satisfies (lo), once that does not depend 
on T, and the fieldfsatislies (1 l), (12), and (13), being given 
as 

f(T,X)=E^(X) ITI T+h(X)(T- p,(X)) 

- qw, on act (43) 

It is to be noted that (11) is not satisfied if, instead of (7), 
we employ Eq. (5) for calculating the thermal radiant loss. 
The mathematical behavior of the lieldfwas used for con- 
structing the form presented in (7), which is physically 
equivalent to (5) while mathematically quite different. 

SOME TYPICAL SITUATIONS DESCRIBED BY (9) 

Several important situations may be described by (9). 
The most famous is the one which takes into account only 
the convective heat loss in a linear way [2,6] giving rise to 
the following form off: 

f= MT- T,), h=&X)>O, T,=Fz(X)>O. (44) 

Another particular case arises when the body is sur- 
rounded by a vacuum. In such cases we have h z 0 and 

j-=&a ITI T, E=qX)>O. (45) 

In addition to the above-mentioned situations, there exist 
infinitely many others in which h and/or E are temperature 
dependent. For instance, when a body exchanges energy 
with the atmosphere by free convection, the coefficient h is 
given by [7, S] 

h=C(T-T,l”, C = const > 0, (46) 

in which C depends on body shape and m is such that 

m=+ for turbulent flow 

m=$ for laminar flow. 
(47) 



314 ROGl%O MARTINS SALDANHA DA GAMA 

In such cases, neglecting the radiative loss, f is given by 

f = C (T- T, lrn (T- T,) (48) 

and, obviously, satisfies (1 1 ), (12) (13), and (14). 
The cases in which the emittance E depends on the tem- 

perature are also frequently found. For instance, when the 
considered body is metallic, the emittance is an increasing 
function of the temperature and, hence, 

f=m (Tl3 T, c=El(T, X) (49) 

satisfies (ll), (12), (13), and (14). 
Situations in which the body boundary has insulated 

subsets are particular cases of (9), too. Such cases arise, 
usually, when a symmetry exists. 

AN APPLICATION 

We shall consider now the energy transfer phenomenon 
in an opaque and rigid cylindrical body, with radius R and 
length 2L, as shown in Fig. 1. It will be assumed that K, E, 
h, q”‘, c, and T, are constant, being q”’ > 0, T, s 0, c = 0, 

-. .- 

and K = k 1. This phenomenon is mathematically described 
by 

~~(r~+~(g)+~=o, 

O<r<R, -L<z<L, 

-kg=hT+so ,T,3 T at r=R 

-kg=hT+m lTl3 T at z=L (50) 

kg=hT+ao (T13 T at ZZ-- L, 

in which r is the radial variable and z is the axial variable. 
Since a symmetry exists we shall consider, instead of (50), 

the description 

O<r<R,O<z<L, 

-kg=hT+so ITI T at r=R 

-kg=hT+m ITI T at z=L (51) 

JT 
-$=o at z = 0. 

The functional Z associated to (5 1) is given by 

L 

Z[u]=f,,“j~k[(~)*+(~)‘]rdzdr 

R L 
- 

ss 
q”‘ur dz dr 

0 0 

+ :,:: F 
~0 lu15rdr 1 z=L 

+[;I,“hu’rdr];=L 

+f 

[j 

L 

EO 1u15 r dz 
0 1 r=R 

-t kjoLhu2rdz] 
[ 

, (52) 
t-=R 

Now defining the dimensionless variables 0, 5, and q as 

O= and (53) 
FIG. 1. The considered cylindrical body. 
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and the dimensionless parameters CI, p, and y as 

315 

and 

we may rewrite (5 1) as 

(54) element 2j-1 

An Hz element 2J 

c)<<<Y,O<rl<l, 

-$le+n ,e,3e at 5=y 

-g=8e+rr ,e,3e at q=l 

do 
!Il=O 

at rl =O. 

The functional I, with the new definitions, becomes 

(55) 

2 3 / M M+l 

Z(M+l) 

N(M+l) 

(N+l‘I(M+l) 
,’ 

Y 
-I 

FIG. 2. The finite element approximation. 

(56) 
in which 

In order to present some results, we shall consider the 
following finite element approximation (see Fig. 2) 

e,={j-I-M[int($$)]}A< (58) 

u = (ei+ 1 - ei) 
( > 

5 
A5 

+(~z--Bi+l+M 
)C > 

y +ei+,+M, 

,i=l--{l+int($l)}Aq (59) 

(60) 

In Eq. (58), (59), and (60) “int( ),, denotes the “integer part 
of.” 

The integers M and N are such that 

M + 1 = number of nodes along the r-direction, 

N + 1 E number of nodes along the q-direction, 
(61) 

~-~jG~p%aO 
and the increments A( and Aq are given by 

At 4 ’ 
j= 1, 2, 3, 4, 5, . . . . NM, (57) 

At=ylM and Aq = l/N. (62) 
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Substituting (57) into (56) and carrying out the integra- 
tions, the functional Z becomes the function 

4 = duL 823 ...? d(N-t l)(M+ I)) 

z,T, (Aj+Bj)+jg, (Cj+D,)+ f, (Ek+Fk) (63) 
k=l 

in which Aj, B,, C,, D,, Ek, and Fk are given as 

A,=;& /jq {[(f+) 

+ ei-ei.,., * 1 
Atj ) ](i”+iA’) 

+ 
[( 

r+*+Mmei+I+M 
A5 

xit >} 
6i+l-~i+2+M * 

4 >I 
i,+fdS , j= 1, 2, 3,4, 5, . . . . NM (641 

B,=-A~A~i(o,+,-~i)(~~j+~AS) 

+ (ei-ei+l+M 1 (i<j+iAt) 

+(Bi+I-ei+*+M )(itj+$At) 

+ (ei+2+M-ei+1+A4 ) (f ei+$Ar)}> 

j = 1, 2, 3, 4, 5, . . . . NM (65) 

if tIj#Oj+I 

Cj=~(2(,+AS)$J8,15, 

if e/=8/+,, j= 1,2, 3,4, 5, . . . . M (66) 

if O,#O,+, 

Dj=;(2&+A<)$e;, if Oj=Oj+,, 

j= 1, 2, 3, 4, 5, . . . . M 

I 
IQ k(M+,)ISek(M+,) 

E,=;y Ar] - le(k+ ,)(M+ ,)I5 O(k+ ,)(M+ 1) > 

6(0 -e(k+,)(M+,)) ’ k(M+ I) 

if 8 -8 k(M+l)- (kfl)(MC1)9 

k = 1, 2, 3, 4, 5, . . . . N 

F,=$ Aq (0 k(M+,))3-((B(k+1)(M+,))3 

3(9 k(M+ I) -e(k+l)(M+l) 

if 0 k(M+l)# (k+l)(M+l) e 

Fk=$‘A’7%&,+,l> if 0 k(M+l)- -8 (k+l)(M+,), 

k = 1, 2, 3, 4, 5, . . . . N. 

(67) 

(68) 

(69) 

OP u.3 I.0 
- MilENSIDNLESS RRDIRL POSITION - 

FIG. 3. The dimensionless temperature 0 versus the dimensionless 
radial position t/y (or r/R) for q = 1.0 (A), q = 0.75 (B), q = 0.5 (C), 
7 = 0.25 (D), and q = 0.0 (E), obtained with 40 finite elements (M = 5, 
N=4), assuming that a =O.l, fi= 1.0, and y = 1.0. The dashed line 
represents the uniform temperature approximation. 
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0276 - 

0213 - 

' M=5 ALPHA =lO.O 

N=4 BETA = 1.0 

GAMMA = l.C 

\ 

I 
on 0.s I.0 

- DMENSXINLESS RRDIRL WSITION - 

FIG. 4. The dimensionless temperature 0 versus the dimensionless 
radial position &$ (or r/R) for q = 1.0 (A), n = 0.75 (B), n = 0.5 (C), 
q = 0.25 (D), and n = 0.0 (E) obtained with 40 finite elements (M = 5, 
N=4), assuming that a = 10.0, fl= 1.0, and y= 1.0. The dashed line 
represents the uniform temperature approximation. 

on 05 1.0 

- DlllENSJDNLESS RROIFIL WSITION - 

FIG. 5. The dimensionless temperature 8 versus the dimensionless 
radial position t/y (or r/R) for n = 1.0 (A), n = 0.75 (B), q =O.S (C), 
n = 0.25 (D), and n = 0.0 (E) obtained with 40 finite elements (M = 5, 
N=4), assuming that a = 100.0, /I = 1.0, and y = 1.0. The dashed line 
represents the uniform temperature approximation. 

' M=Q ALPHA =lO.O 

N=3 BETA = 1.0 

GAMMA = 3.0 

FIG. 6. The dimensionless temperature fI versus the dimensionless 
radial position l/y (or r/R) for n = 1.0 (A), n = 0.67 (B), n = 0.33 (C), and 
n = 0.0 (D) obtained with 54 finite elements (M = 9, N= 3), assuming that 
u = 10.0, j = 1.0, and y = 3.0. The dashed line represents the uniform 

on as 1.d 

- DIIIENSIDNLESS RDIAL POSITILlN - 

temperature approximation. 

M'3 ALPHA = 0.1 

N=5 BETA = 1.0 

GAMMA = 0.2 

0.0 0.5 I.0 

- DIIIENSIONLESS RRXRL POSITION - 

FIG. 7. The dimensionless temperature f3 versus the dimensionless 
radial position t/y (or r/R) for n = 1.0 (A), q = 0.8 (B), q = 0.6 (C), 1 = 0.4 
(I)), q = 0.2 (E), and n = 0.0 (F ) obtained with 30 finite elements (M = 3, 
N= 5), assuming that a= 10.0, jI = 1.0, and y =0.4. The dashed line 
represents the uniform temperature approximation. 
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’ M=5 ALPHA = 10.0 

N=4 BETA = 100.0 

GAMMA = l.C 

0.0 0.5 I.0 

- DIHENSIONLESS RRDIRL F’OSITION - 

FIG. 8. The dimensionless temperature 0 versus the dimensionless 
radial position t/y (or r/R) for n = 1.0 (A), n=O.75 (B), q =0.5 (C), 
n = 0.25 (D), and n = 0.0 (E) obtained with 40 finite elements (M= 5, 
N = 4), assuming that a = 10.0, /I = 100.0, and y = 1.0. The dashed line 
represents the uniform temperature approximation. 

a.0 0.5 I.0 

- LWlEN4UNLESS RROIRL POSITION - 

FIG. 9. The dimensionless temperature 0 versus the dimensionless 
radial position r/y (or r/R) for n = 1.0 (A), q =0.75 (B), q=O.5 (C), 
q = 0.25 (D), and 7 = 0.0 (E) obt ame d with 40 tinite elements (M = 5, 
N = 4) assuming that LZ = 10.0, (5 = 0.0 (without convective losses), and 
y = 1.0. The dashed line represents the uniform temperature approxima- 

FIG. 10. The dimensionless temperature B as a function of n and 5 
obtained with 160 finite elements (M = 10, N = 8) assuming that E= 10.0, 
p = 1.0, and y = 1.0. 

The relation between i andj in Eq. (64) and (65) is given 
by (60). 

Figures 3-9 present some results obtained from the mini- 
mization of the function 4. The minimum was reached with 
the aid of the procedure presented in Appendix I. Each 
figure presents the dimensionless temperature 8 versus the 
dimensionless radial position l/y (or r/R) for (N + 1) values 
of the variable ‘1. 

The dashed line represents the result obtained when the 
temperature is assumed to be a constant. In this case we 
have 

0 = A = cons& o<g<y,o<q<1 (70) 

in which A is the unique root of 

y=(/lA+cr IAl A)(2+y). (71) 

Figure 10 presents a tridimensional representation of the 
solution for the particular situation considered in Fig. 4. 

FINAL REMARKS 

The main contribution of this work was the construction 
of a minimum principle suitable for nonlinear (conduction/ 
convection/radiation) heat transfer problems and its 
employment in the simulation of a typical problem using 
finite elements. 

It should be noted that the employment of (7) instead of 
(5) was fundamental to constructing the minimum principle 
and for ensuring existence and uniqueness of the solution. 
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The solution of problem (77) is given by When, instead of (8), we employ the description (6), the 
existence and the uniqueness are not ensured. This fact may 
be illustrated from the particular case in which the body is 
a sphere with unitary radius and (in a given system of units) 
we have E = 1, h = CS, T, = 0, c = 0, q”’ = cr, and K = CJ 1. In 
such a situation, (6) reduces to 

,=A+;, O<r<l (78) 

in which A is a (real) root of 
1 d -- 
r2 dr ! > 

Y2 $ + 1 = 0, 06X1 

-$=T~+T, 
(72) 

r=l 

in which r is the radial variable (r = (x2 + y2 + z2)‘j2). 
The solution (solutions) of problem (72) is given by 

T=A 2, Obrbl, (73) 

in which A is a (real) root of 

+ = (A - 3)“+ (A - b). (74) 

Equation (74) admits the real roots A = 0.489181 and 
A = -0.92613 1. Thus the solution of (72) is not unique. 

Now, employing (8), we have, instead of (72), the 
problem 

if r2$ +l=O, 
( > 

O<r<l, 

-$=iTi3~+~, 
(75) 

r= 1. 

The solution to (75) is also given by (73) but, now, the 
constant A is a root of 

~=I(A-a,13(A-~)+(A-~). (76) 

Equation (76) admits only the root A = 0.489181 and, 
hence, the solution is unique and coincides with the one (of 
(72)) with physical sense. 

In order to present a situation in which there is no solu- 
tion it is sufficient to consider the same set Q (defined in 
(72)) with a= 1, h=O, c=O, q”‘= -6, and k=a. Under 
these assumptions problem (6) is given as 

-l=O, Obr<l, 

dT 
(77) 

T4 
dr ’ 

r= 1. 
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- i = (A + t)“. (79) 

It is obvious that (79) does not admit real roots. Thus, there 
exist no real solution in this case. 

APPENDIX I: THE MINIMIZATION OF + 

The minimum of the function 4, defined by (63), is 
reached through an iterative process in which each step 
consists of minimizing a function of one real variable. This 
process may be summarized as 

(1) The unknown Oi (i= 1, 2, . . . . (N+ l)(M+ 1)) are 
initialized as 

Op=A; i= 1,2, . . . . (N+ l)(M+ l), (AI.l) 

in which A is the root of (7 1). 
(2) Minimizing each function dj (4; = $,(di)) given by 

dl =A(Od=&L e:> @!2 ...t qv+I)(M+,)) 

~2=~2ce2)=ke:,e2,e~,...,0~N+,)IM+,i) 

d3=63(~3)=6(0:, e:, 03, o:, ..., qN+,)(M+,)) 

9 -6 (N+l)(M+l)- (N+I)(M+I) (0 (N+ l)(M+ I) ) 

=&eL e:, e:, . ..Y OfN+,)(M+,)-1, 

0 (N+ I)(M+ I) 1 9 (AI.2) 

in which 0; is obtained from the minimization of Ji(OJ. 
(3) Having obtained the 0:‘s we may repeat the second 

step for obtaining the 03’s. This procedure is repeated until. 
the convergence is reached. 

The minimum of each function CJS~ corresponds to the root 
of its first derivative 4;. This root is, at the iteration n + 1, 
reached with the following (Newton-Raphson) scheme 

X m+l =Xm - &(x”)/&yx”) (M.3) 
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